
This solution drift error is particularly 
dangerous because the solution is 
qualitatively correct and thus there are 
no obvious symptoms that the error even 
exists. Because this error currently goes 
unmeasured in large-scale multiphysics 
simulations, we must develop a deeper 
understanding of this weak link in 
predictive simulation to further quantify this 
uncertainty.

Within the overall field, we have been 
working on developing new solution 
algorithms which are second-order 
accurate in time, using numerical analysis 
to understand errors in existing first-
order in time methods, and gaining a 
deeper understanding of how the time 
integration errors may accumulate within 
a multiphysics computer simulation. In 
algorithm development we have focused 
on Jacobian-Free Newton-Krylov methods 
with physics-based preconditioners [1] along 
with second-order in time operator splitting 
methods [2, 3]. We have concentrated on 
using modified equation analysis [4] and 
asymptotic analysis as numerical analysis 
tools for studying the errors and behaviors 
of splitting methods.

All of our multiphysics problems of 
interest have fluid dynamics as the core 
of the problem, with additional physics 
contributing to the overall problem. 
In addition to working with prototype 
systems, we have been applying our 
research to multiphysics systems such 
as radiation hydrodynamics, extended 
magnetohydrodynamics [5], multiphase 
flow hurricane systems [6], solidifying flows 
[7], and nuclear power reactor thermal 
hydraulics [8].

As a simple example of accumulation of time 
integration error consider Fig. 1, which 
displays a solution at two different times (t = 
5 and 10) for a one dimensional (1-D) 
reaction diffusion problem. This is a thermal 
wave moving left to right in time. The exact 
solution is EX, BE is a first-order in time 
solution, and CN is a second-order in time 
solution. For a given time step we see the 
first-order method drifting in time from the 
EX solution, while the second-order in time 
method tracks the EX solution. Figure 2 
shows that even when the two methods have 
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Predictive computer simulation of 
multiphysics systems is one of the 
Laboratory’s core missions. This 
endeavor is at the heart of such 

DOE programs as the Advanced Simulation 
and Computing (ASC) program and the 
Scientific Discovery through Advanced 
Computing (SciDAC) program. There are 
many factors that affect the accuracy of 
a simulation, including proper physics 
models, accurate spatial discretization, and 
adequate spatial grid resolution. Perhaps 
the least appreciated, understood, and 
studied factor is the issue of multiphysics 
time integration methods and long time 
integration error.  

Modern multiphysics time integration 
methods are comprised of basic time 
integration methods, and nonlinear 
and linear solver techniques that can 
be abstracted and generally applied to 
accurately, robustly and efficiently solve 
multiphysics systems. These systems are 
characterized by a myriad of complex 
interacting physical mechanisms. These 
mechanisms often nearly balance to evolve 
a solution on a dynamical time scale that 
is long relative to the component time 
scales. Solution methods for such systems 
require the use of significant coupling in the 
nonlinear and linear solution techniques and 
a significant implicit character to the time 
integration methods. 

The number of time steps required for 
a multiphysics computer simulation is 
typically proportional to the ratio of the 
slowest time scale to one of the faster time 
scales. Because of this ratio, multiphysics 
simulations often require many (106) time 
steps. The resulting accuracy after a large 
number of time steps depends more on a 
temporal integration schemes ability to track 
the solution than on the size of the error on 
a single time step. A temporal integration 
scheme that drifts away from the solution 
may end up with a global error that is very 
large even if it has a small error per time 
step.
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the same local truncation error (LTE) per 
time step (x-axis), and we integrate to the 
same time (t = 15), the global error (y-axis) is 
different. The BE methods drifts from the 
solution at a faster rate than the CN method 
and this gap increases as we increase the 
allowable LTE per time step. This is directly 
related to our premise that these two 
different LTE’s integrate differently in time 
since in BE the truncation error is dissipative 
and in CN the truncation error is dispersive. 
  
As a second example we look at 
nonequilibrium radiation diffusion. In 
the asymptotic limit, where the coupling 
between radiation and material is tight, the 
two fields should have the same temperature 
(equilibrium). We have used asymptotic 
analysis to show that a “standard” split/
linearized method for this problem does 
not enforce this asymptotic balance. In the 
problem shown in Figs. 3 and 4, a radiation 
front is moving from left to right heating 
the material. Solutions are plotted for t = 
0.1 and 0.5. There is no physical mechanism 
for the material temperature, Tm, to be 
hotter than the radiation temperature, Tr. 
As shown in Fig. 3, the results coming from 
an unsplit (implicitly balanced) method 
show a physically credible solution with the 
temperatures close, but Tr > Tm.  The result 
in Fig. 4, coming from a split/linearized 
method, was predicted by our analysis and 
is not physically correct since Tm > Tr. This 
analysis has helped to explain a “frequently 
observed” inaccuracy in such simulations.

For more information contact Dana Knoll at 
nol@lanl.gov.

[1] D.A. Knoll and D.E. Keyes, J. Comput. 
Phys. 193, 357–397 (2004).
[2] R.M. Rauenzahn, et al., Comput. Phys. 
Comm., 2005, in press.
[3] V.A. Mousseau and D.A. Knoll, Nuc. Sci. 
Eng., 2005, accepted.
[4] D.A. Knoll, et al., J. Comput. Phys. 185, 
583–611 (2003).
[5] L. Chacón and D.A. Knoll, J. Comput. 
Phys. 188, 573–592 (2003).
[6] J. Reisner, et al., Mon. Weather Rev. 133, 
1003–1022 (2004).
[7] D.A. Knoll, et al., SIAM J. Sci. Comput. 23, 
381–397 (2002).
[8] V.A. Mousseau, J. Comput. Phys. 200, 
104–132 (2004).

Fig.	1.	
Various	solutions	
of	the	reaction	dif-
fusion	problem	at		
t	=	5	and	10.

Fig.	2.	
Global	solution	error	
as	a	function	of	LTE	
per	time	step.

Fig.	3.	
Implicitly	balanced	
solution.

Fig.	4.	
Split/linearized	solu-
tion.

A U.S. DEPARTMENT OF ENERGY LABORATORY                                                      LALP-06-100    APRIL 2006 1 5 6




